\( \DeclareMathOperator{\abs}{abs} \newcommand{\ensuremath}[1]{\mbox{$#1$}} \)
(%i1) |
LieCovector
(
[
l
]
)
:
=
block
(
[
f
,
w
,
x
,
k
,
Df
,
Dw
,
Lfw
]
,
if ( length ( l ) < 3 ) or ( length ( l ) > 4 ) then error ( "Aufruf mit 3 oder 4 Argumenten." ) , f : l [ 1 ] , w : l [ 2 ] , x : l [ 3 ] , if length ( l ) = 3 then k : 1 else k : l [ 4 ] , if not ( nonnegintegerp ( k ) ) then error ( "Ordnung k muss natürliche Zahl sein." ) , if k = 0 then return ( w ) else Df : jacobian ( f , x ) , Dw : jacobian ( w , x ) , Lfw : list_matrix_entries ( w . Df + f . transpose ( Dw ) ) , return ( LieCovector ( f , Lfw , x , k − 1 ) ) ) $ |
(%i5) |
f
:
[
x2
,
(
m
·
G
·
l
·
sin
(
x1
)
−
d
·
x2
+
K
·
x3
)
/
J
,
−
(
K
·
x2
+
R
·
x3
)
/
L
]
$
ω : [ J · L / K , 0 , 0 ] $ x : [ x1 , x2 , x3 ] $ n : length ( x ) $ |
(%i6) | σ : sum ( a [ i ] · LieCovector ( f , ω , x , i ) , i , 0 , n − 1 ) ; |
\[\operatorname{(\sigma ) }\left[ \frac{{a_2} G L l m \cos{\left( \ensuremath{\mathrm{x1}}\right) }}{K}+\frac{{a_0} J L}{K}\operatorname{,}\frac{{a_1} J L}{K}-\frac{{a_2} L d}{K}\operatorname{,}{a_2} L\right] \]
Created with wxMaxima.