\( \DeclareMathOperator{\abs}{abs} \newcommand{\ensuremath}[1]{\mbox{$#1$}} \)
| (%i1) | LieBracket
            (
            [
            l
            ]
            )
            :
            =
            block
            (
            [
            f
            ,
            g
            ,
            x
            ,
            k
            ,
            Df
            ,
            Dg
            ,
            ad
            ]
            , if ( length ( l ) < 3 ) or ( length ( l ) > 4 ) then error ( "Aufruf mit 3 oder 4 Argumenten." ) , f : l [ 1 ] , g : l [ 2 ] , x : l [ 3 ] , if length ( l ) = 3 then k : 1 else k : l [ 4 ] , if not ( nonnegintegerp ( k ) ) then error ( "Ordnung k muss natürliche Zahl sein." ) , if k = 0 then return ( g ) else Df : jacobian ( f , x ) , Dg : jacobian ( g , x ) , ad : list_matrix_entries ( Dg . f − Df . g ) , return ( LieBracket ( f , ad , x , k − 1 ) ) ) $ | 
| (%i2) | Involutivep
            (
            L
            ,
            x
            )
            :
            =
            block
            (
            [
            F
            ,
            G
            ,
            i
            ,
            j
            ,
            r
            ,
            n
            ]
            , r : length ( L ) , F : apply ( ' matrix , L ) , F : transpose ( F ) , G : copy ( F ) , for i : 1 thru r do for j : i + 1 thru r do block ( [ f1 , f2 ] , f1 : list_matrix_entries ( col ( F , i ) ) , f2 : list_matrix_entries ( col ( F , j ) ) , G : addcol ( G , LieBracket ( f1 , f2 , x ) ) ) , is ( rank ( F ) = rank ( G ) ) ) $ | 
| (%i6) | f
            :
            [
            x2
            ,
            0
            ,
            x4
            ,
            −
            (
            G
            ·
            sin
            (
            x3
            )
            )
            /
            l
            ]
            $ g : [ 0 , 1 , 0 , − cos ( x3 ) / l ] $ x : [ x1 , x2 , x3 , x4 ] $ n : length ( x ) $ | 
| (%i7) | D : makelist ( LieBracket ( − f , g , x , i ) , i , 0 , n − 2 ) ; | 
\[\operatorname{(D) }\left[ \left[ 0\operatorname{,}1\operatorname{,}0\operatorname{,}-\frac{\cos{\left( \ensuremath{\mathrm{x3}}\right) }}{l}\right] \operatorname{,}\left[ 1\operatorname{,}0\operatorname{,}-\frac{\cos{\left( \ensuremath{\mathrm{x3}}\right) }}{l}\operatorname{,}-\frac{\sin{\left( \ensuremath{\mathrm{x3}}\right) } \ensuremath{\mathrm{x4}}}{l}\right] \operatorname{,}\left[ 0\operatorname{,}0\operatorname{,}-\frac{2 \sin{\left( \ensuremath{\mathrm{x3}}\right) } \ensuremath{\mathrm{x4}}}{l}\operatorname{,}\frac{\cos{\left( \ensuremath{\mathrm{x3}}\right) } {{\ensuremath{\mathrm{x4}}}^{2}}}{l}-\frac{G {{\sin{\left( \ensuremath{\mathrm{x3}}\right) }}^{2}}}{{{l}^{2}}}+\frac{G {{\cos{\left( \ensuremath{\mathrm{x3}}\right) }}^{2}}}{{{l}^{2}}}\right] \right] \]
| (%i8) | Involutivep ( D , x ) ; | 
\[\operatorname{false}\]
Created with wxMaxima.