\( \DeclareMathOperator{\abs}{abs} \newcommand{\ensuremath}[1]{\mbox{$#1$}} \)
(%i1) |
LieScalar
(
[
l
]
)
:
=
block
(
[
f
,
h
,
x
,
k
,
Lfh
]
,
if ( length ( l ) < 3 ) or ( length ( l ) > 4 ) then error ( "Aufruf mit 3 oder 4 Argumenten." ) , f : l [ 1 ] , /* Vektorfeld */ h : l [ 2 ] , /* Skalarfeld */ x : l [ 3 ] , /* Variable */ if length ( l ) = 3 then k : 1 else k : l [ 4 ] , if not ( nonnegintegerp ( k ) ) then error ( "Ordnung k muss natürliche Zahl sein." ) , if k = 0 then return ( h ) else Lfh : jacobian ( [ h ] , x ) . f , return ( LieScalar ( f , Lfh , x , k − 1 ) ) ) $ |
(%i2) |
RelativeDegree
(
f
,
g
,
h
,
x
)
:
=
block
(
[
n
,
r
:
inf
,
lie
]
,
n : length ( x ) , for k : 1 thru n do ( lie : ratsimp ( LieScalar ( g , h , x ) ) , if not ( lie = 0 ) then ( r : k , return ( r ) ) , h : LieScalar ( f , h , x ) ) , r ) $ |
(%i6) |
f
:
[
sin
(
x3
)
,
cos
(
x3
)
,
0
]
;
g : [ 0 , 0 , 1 ] ; h : c1 · x1 + c2 · x2 ; x : [ x1 , x2 , x3 ] ; |
\[\operatorname{(f) }\left[ \sin{\left( \ensuremath{\mathrm{x3}}\right) }\operatorname{,}\cos{\left( \ensuremath{\mathrm{x3}}\right) }\operatorname{,}0\right] \]
\[\operatorname{(g) }\left[ 0\operatorname{,}0\operatorname{,}1\right] \]
\[\operatorname{(h) }\ensuremath{\mathrm{c2}}\, \ensuremath{\mathrm{x2}}+\ensuremath{\mathrm{c1}}\, \ensuremath{\mathrm{x1}}\]
\[\operatorname{(x) }\left[ \ensuremath{\mathrm{x1}}\operatorname{,}\ensuremath{\mathrm{x2}}\operatorname{,}\ensuremath{\mathrm{x3}}\right] \]
(%i7) | RelativeDegree ( f , g , h , x ) ; |
\[\operatorname{ }2\]
Created with wxMaxima.