\( \DeclareMathOperator{\abs}{abs} \newcommand{\ensuremath}[1]{\mbox{$#1$}} \)
(%i2) |
load
(
basic
)
$
if get ( ' cartan , ' version ) = false then load ( cartan ) $ |
(%i4) |
x
:
[
x1
,
x2
,
x3
]
;
dx : init_cartan ( x ) ; |
\[\operatorname{(x) }\left[ \ensuremath{\mathrm{x1}}\operatorname{,}\ensuremath{\mathrm{x2}}\operatorname{,}\ensuremath{\mathrm{x3}}\right] \]
\[\operatorname{(dx) }\left[ \ensuremath{\mathrm{dx1}}\operatorname{,}\ensuremath{\mathrm{dx2}}\operatorname{,}\ensuremath{\mathrm{dx3}}\right] \]
(%i7) |
ω
:
[
ω1
,
ω2
,
ω3
]
;
depends ( ω , x ) ; ω : ω . dx ; |
\[\operatorname{(\omega ) }\left[ \ensuremath{\mathrm{\omega 1}}\operatorname{,}\ensuremath{\mathrm{\omega 2}}\operatorname{,}\ensuremath{\mathrm{\omega 3}}\right] \]
\[\operatorname{ }\left[ \operatorname{\omega 1}\left( \ensuremath{\mathrm{x1}}\operatorname{,}\ensuremath{\mathrm{x2}}\operatorname{,}\ensuremath{\mathrm{x3}}\right) \operatorname{,}\operatorname{\omega 2}\left( \ensuremath{\mathrm{x1}}\operatorname{,}\ensuremath{\mathrm{x2}}\operatorname{,}\ensuremath{\mathrm{x3}}\right) \operatorname{,}\operatorname{\omega 3}\left( \ensuremath{\mathrm{x1}}\operatorname{,}\ensuremath{\mathrm{x2}}\operatorname{,}\ensuremath{\mathrm{x3}}\right) \right] \]
\[\operatorname{(\omega ) }\ensuremath{\mathrm{dx3}}\, \ensuremath{\mathrm{\omega 3}}+\ensuremath{\mathrm{dx2}}\, \ensuremath{\mathrm{\omega 2}}+\ensuremath{\mathrm{dx1}}\, \ensuremath{\mathrm{\omega 1}}\]
(%i9) |
dω
:
ext_diff
(
ω
)
$
facsum ( % , dx1 , dx2 , dx3 ) ; |
\[\operatorname{ }\ensuremath{\mathrm{dx2}}\, \ensuremath{\mathrm{dx3}}\, \left( \frac{d}{d \ensuremath{\mathrm{x2}}} \ensuremath{\mathrm{\omega 3}}-\frac{d}{d \ensuremath{\mathrm{x3}}} \ensuremath{\mathrm{\omega 2}}\right) +\ensuremath{\mathrm{dx1}}\, \ensuremath{\mathrm{dx3}}\, \left( \frac{d}{d \ensuremath{\mathrm{x1}}} \ensuremath{\mathrm{\omega 3}}-\frac{d}{d \ensuremath{\mathrm{x3}}} \ensuremath{\mathrm{\omega 1}}\right) +\ensuremath{\mathrm{dx1}}\, \ensuremath{\mathrm{dx2}}\, \left( \frac{d}{d \ensuremath{\mathrm{x1}}} \ensuremath{\mathrm{\omega 2}}-\frac{d}{d \ensuremath{\mathrm{x2}}} \ensuremath{\mathrm{\omega 1}}\right) \]
(%i11) |
depends
(
[
η12
,
η13
,
η23
]
,
x
)
;
η : η12 · dx1 ~ dx2 + η13 · dx1 ~ dx3 + η23 · dx2 ~ dx3 ; |
\[\operatorname{ }\left[ \operatorname{\eta 12}\left( \ensuremath{\mathrm{x1}}\operatorname{,}\ensuremath{\mathrm{x2}}\operatorname{,}\ensuremath{\mathrm{x3}}\right) \operatorname{,}\operatorname{\eta 13}\left( \ensuremath{\mathrm{x1}}\operatorname{,}\ensuremath{\mathrm{x2}}\operatorname{,}\ensuremath{\mathrm{x3}}\right) \operatorname{,}\operatorname{\eta 23}\left( \ensuremath{\mathrm{x1}}\operatorname{,}\ensuremath{\mathrm{x2}}\operatorname{,}\ensuremath{\mathrm{x3}}\right) \right] \]
\[\operatorname{(\eta ) }\ensuremath{\mathrm{dx2}}\, \ensuremath{\mathrm{dx3}}\, \ensuremath{\mathrm{\eta 23}}+\ensuremath{\mathrm{dx1}}\, \ensuremath{\mathrm{dx3}}\, \ensuremath{\mathrm{\eta 13}}+\ensuremath{\mathrm{dx1}}\, \ensuremath{\mathrm{dx2}}\, \ensuremath{\mathrm{\eta 12}}\]
(%i13) |
dη
:
ext_diff
(
η
)
$
factor ( % ) ; |
\[\operatorname{ }\ensuremath{\mathrm{dx1}}\, \ensuremath{\mathrm{dx2}}\, \ensuremath{\mathrm{dx3}}\, \left( \frac{d}{d \ensuremath{\mathrm{x1}}} \ensuremath{\mathrm{\eta 23}}-\frac{d}{d \ensuremath{\mathrm{x2}}} \ensuremath{\mathrm{\eta 13}}+\frac{d}{d \ensuremath{\mathrm{x3}}} \ensuremath{\mathrm{\eta 12}}\right) \]
Created with wxMaxima.